
4.3.2 Closure of Relations
⤷ Proof of Closure Theorem(cont.)

Proof of (3) t(R)=R∪R2∪R3∪…

• Consider arbitrary pairs <x,y> and <y,z>

<x,y>∈R∪R2∪R3∪…. ∧ <y,z>∈R∪R2∪R3∪….

⇒ <x,z>∈R∪R2∪R3∪….

Therefore, by the transitivity of R∪R2∪R3∪…. We have

t(R) ⊆R∪R2∪R3∪…   

• Next, we prove by induction that Rn ⊆t(R).

For n=1, the statement is obviously true. Assume it holds for n=k. 
For any <x,y>, we have

<x,y>∈Rk+1⇒ <x,y>∈Rk∘R ⇒∃t (<x,t>∈Rk ∧<t,y>∈R) 

⇒∃t (<x,t>∈t(R)∧<t,y>∈t(R)) ⇒<x,y>∈t(R) （t(R) transitive）

Thus，R∪R2∪R3∪… ⊆ t(R)   



4.3.2 Closure of Relations
⤷ Closure Matrix Representation

 Let the relation matrices of R,  r(R),  s(R),  t(R) be  M, Mr,  Ms

and Mt , respectively. Then, we have:

Mr =M+E    
Ms =M+M’

Mt =M+M2+M3+…

where E is the identity matrix of the same order as M, and M’ is the 
transpose of M.

Note: In the above equations, the matrix elements are added 
using logical addition.



4.3.2 Closure of Relations
⤷ Closure Operations on Relation Graphs

 Let the relation graphs of R, r(R), s(R), t(R) be denoted by G, Gr, Gs, Gt , 
respectively. 
Then, the vertex sets of Gr, Gs, Gt are the same as the vertex set of G. 

 In addition to the edges of G , new edges are added in the following ways：
• For each vertex in G, if there is no cycle, add a cycle. The resulting 
graph is Gr. 
• For each directed edge xi → xj, (with i≠j), add a reverse edge xi → xi . 
The resulting graph is Gs. 
• For each vertex  xi in G, examine all paths starting from xi ，if there is 
no edge from xi to any node xj in the path, add the corresponding edge. 
After checking all vertices, the resulting graph is Gt .  



4.3.2 Closure of Relations
⤷ Closure Operations on Relation Graphs (e.g.)

Example: Let A={a,b,c,d}, R={<a,b>,<a,c>,<b,c>,<c,d>,<d,c>},
R and r(R), s(R), t(R) the relation graph is shown. 

e.g.



4.3.2 Closure of Relations
⤷ Warshall's Algorithm for Transitive Closure

Algorithm Idea: Consider a sequence of matrices M0, M1, …, Mn of size 
n+1, where the element in the i-th row and j-th column of matrix Mk is 
denoted as Mk[i,j]. For k=0,1,…,n, Mk[i,j]=1 if and only if there exists 
a path from xi to xj in the relation graph of R , and this path passes 
through only the vertices in {x1, x2, …, xk} except for the endpoints. It 
is easy to prove that M0 is the relation matrix of R , and Mn corresponds 
to the transitive closure of R .

Warshall Algorithm: Starting from M0, calculate M1, M2, …, until Mn .

From Mk [i, j] to compute Mk+1[i, j]:  i, j∈V. 

The vertex set V1={1,2, …, k}, V2={k+2, …, n},V=V1∪{k+1}∪V2，

Mk+1[i,j]=1⇔ There exists a path i to j .
that only passes through the points in V1∪{k+1}.



4.3.2 Closure of Relations
⤷ Warshall's Algorithm for Transitive Closure (cont.)

These paths are divided into two categories:

•Category 1: Paths that only pass through the points inV1

•Category 2: Paths that pass through point k+1

For Category 1 paths：Mk[i,j]=1

For Category 2 paths:

Mk[i,k+1]=1 ∧ Mk[k+1,j]=1



4.3.2 Closure of Relations
⤷ Warshall's Algorithm for Transitive Closure (cont.)

Algorithm 4.1:  Warshall Algorithm

Input：M （relation matrix of R ）

Output：Mt （relation matrix of t(R)）

1.  Mt←M

2.  for k←1 to n do

3.     for i←1 to n do

4. for j←1 to n do

5. Mt[i, j] ←Mt[i, j] or Mt[i, k]⋅Mt[k, j]

Time Complexity: T(n)=O(n3)



4.3 Properties of Relations• Brief summary

Objective :

Key Concepts ：
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4.4.1 Equivalence Relations

⤷ Equivalence relation ～

 Definition 4.18: let R be a relation on a non-empty set. If R is 
reflexive, symmetric, and transitive, then R is called an equivalence 
relation on A. If R is an equivalence relation and <x,y>∈R, we say
that x is equivalent to y, denoted as x～y.

Example: Verify that R is an equivalence relation on A.
Let A={1, 2, …, 8} , and define the relation R on A as follows ：
R={<x,y>| x,y∈A∧x≡y (mod 3)}

where x≡y (mod 3) means that x and y are congruent modulo 3, 
i.e., the remainder when x is divided by 3 is equal to the remainder 
when y is divided by 3.

e.g.



4.4.1 Equivalence Relations

⤷ Equivalence relation ～(e.g.)

Example: Let A={1, 2, …, 8} , and define the relation R on A as 
follows ： R={<x,y>| x,y∈A∧x≡y (mod 3)}
where x≡y (mod 3) means that x and y are congruent modulo 3, 
i.e., the remainder when x is divided by 3 is equal to the remainder 
when y is divided by 3.

It is easy to verify that R is an equivalence relation on A, because:

∀x∈A, if x≡x(mod 3)                                    （reflexivity）

∀x,y∈A, if x≡y(mod 3), then y≡x(mod 3)     （symmetry）

∀x,y,z∈A, if x≡y(mod 3), y≡z(mod 3), then

x≡z(mod 3)                                        （transitivity）

e.g.



4.4.1 Equivalence Relations
⤷ Equivalence relation graph (e.g.)

 Relation Graph of the Modulo 3 Equivalence Relation on A

Let A={1, 2, …, 7}, 
R={ <x,y>| x,y∈A∧x≡y (mod 3) }

The relation graph of R is shown below ：
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4.4.2 Equivalence Classes and Quotient Sets
⤷ Equivalence Classes

 Definition 4.19: let R be an equivalence relation on a non-empty 
set A, ∀x∈A，define [x]R = { y| y∈A ∧ xRy }

We call [x]R the equivalence class of x under R, or simply the 
equivalence class of x, denoted as [x].  

Note: [x]R is the set of all elements in A that are equivalent to x 
under the relation R.

[x]R ={y∈A∣(x,y)∈R}



4.4.2 Equivalence Classes and Quotient Sets
⤷ Equivalence Classes (e.g.)

Example: Equivalence classes of the modulo 3 equivalence 
relation on A={1, 2, … , 8} ：

[1]=[4]=[7]={1,4,7}
[2]=[5]=[8]={2,5,8}
[3]=[6]={3,6}

•The three equivalence classes with remainders 1, 2, and 0 are 
disjoint, and their union is A.

e.g.



4.4.2 Equivalence Classes and Quotient Sets
⤷ Partition Theorem of Equivalence Classes

 Theorem 4.8: Partition Theorem of Equivalence Classes.

Let R be an equivalence relation on a non-empty set A

The following conclusions hold:

(1) ∀x∈A, [x] is a non-empty subset of A.

(2) ∀x, y∈A, if xRy, then [x]=[y].

(3) ∀x, y∈A, if x    y, then [x] and [y] are disjoint.

(4) , the union of all equivalence classes is equal to A. Ax
Ax

=
∈

][



4.4.2 Equivalence Classes and Quotient Sets
⤷ Proof of the Partition Theorem of Equivalence Classes

 Theorem 4.8(1): ∀x∈A, [x] is a non-empty subset of A.

Proof: From the definition of equivalence classes, ∀x∈A, we have
[x]⊆A. By reflexivity, xRx，so x∈[x], which implies that [x] is non-
empty. Since all elements in the equivalence class [x] are selected 
from the set A， it follows that [x] is a subset of A.

 Theorem 4.8(2): ∀x, y∈A, if xRy, then [x]=[y].

Proof: For any element a in [x]，(x,a)∈R. Since (x,y)∈R and R is 
transitive, we can conclude that (y,a)∈R , so a ∈[y]. This proves 
that [x]⊆[y].

Similarly, we can prove that [y] ⊆ [x]. Therefore [x]=[y] .



4.4.2 Equivalence Classes and Quotient Sets
⤷ Proof of the Partition Theorem of Equivalence Classes (cont.)

 Theorem 4.8(3): ∀x, y∈A, if x    y, then [x] and [y] are disjoint.

Proof: 

Suppose [x]∩[y]≠∅, then there exists an element z∈[x]∩[y], 
which implies  z∈[x]∧z∈[y], then <x,z>∈R∧<y,z>∈R holds. 

By the transitivity and symmetry of R, then <x,y>∈R, 
contradicted to x   y.



4.4.2 Equivalence Classes and Quotient Sets
⤷ Proof of the Partition Theorem of Equivalence Classes (cont.)

 Theorem 4.8(4):

, the union of all equivalence classes is A.

• Proof1: ⋃𝒙𝒙∈𝑨𝑨 𝒙𝒙 ∈ 𝑨𝑨 , For any y.

• Proof2: 𝑨𝑨 ∈ ⋃𝒙𝒙∈𝑨𝑨 𝒙𝒙 , For any y.

�
𝒙𝒙∈𝑨𝑨

𝒙𝒙 = 𝑨𝑨

𝒚𝒚 ∈ ⋃𝒙𝒙∈𝑨𝑨[𝒙𝒙] ⇔ ∃x (x∈A∧y∈[x]) 
⇒ y∈[x]∧[x]⊆A ⇒ y∈A
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 ⋃𝒙𝒙∈𝑨𝑨[𝒙𝒙] ∈A) 

y∈A ⇒ y∈[y]∧y∈A ⇒ y∈⋃𝒙𝒙∈𝑨𝑨[𝒙𝒙]
Hence A ⊆⋃𝒙𝒙∈𝑨𝑨 𝒙𝒙 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡.

• Thus, we conclude that: ⋃𝒙𝒙∈𝑨𝑨 𝒙𝒙 = 𝑨𝑨.



4.4.2 Equivalence Classes and Quotient Sets
⤷ Quotient Sets

Definition 4.20:  Let R be an equivalence relation on a non-
empty set A. The set of equivalence classes of R is called the 
quotient set of A with respect to R, denoted by A/R, 

A/R = { [x]R | x∈A }

Example: Let A={1, 2, …, 8}，the quotient set of A with 
respect to the equivalence relation R modulo 3 is: A/R = 
{ {1, 4,7}, {2, 5, 8}, {3, 6} }

The quotient sets of A with respect to the identity relation 
and the universal relation are:

A/IA = { {1},{2}, … ,{8}}

A/EA = { {1, 2, … ,8} }

e.g.
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4.4.3 Partition of a Set
⤷ Quotient Sets

Definition 4.21:  Let A be a non-empty set, A family of subset π
(π ⊆P(A)), if it satisfies the following conditions：

(1) ∅∉π ; (2) ∀x∀y (x,y∈π∧x≠y→x∩y=∅);  (3) ∪π =A 

Then π is called a partition of A,  and the element of π are 
called blocks of the partition of A.

Example: Let A＝{a, b, c, d}, given the partitions: 

π 1={{a, b, c},{d}}， π 2={{a, b},{c},{d}}
π 3={{a},{a, b, c, d}}， π 4={{a, b},{c}}
π 5={∅,{a, b},{c, d}}， π 6={{a,{a}},{b, c, d}}

Then π 1, π 2 are partitions of A , while the others are not.

e.g.



4.4.3 Partition of a Set
⤷ Correspondence Between Partitions and Equivalence Relations

The quotient set A/R is a partition of A .

Different quotient sets correspond to different partitions.

 Given any partition π of A , we define a relation R on A as follows：
R ={<x,y> | x,y∈A and [x]π=[y]π}

([x]π=[y]π : x and y are in the same partition block of π )

Then, R is an equivalence relation on A, and the quotient set 
determined by this equivalence relation is exactly π.

Example: List all equivalence relations on A＝{1,2,3}

Solution approach:

First, determine all partitions of A, and then write out the 
corresponding equivalence relations based on these partitions.

e.g.



4.4.3 Partition of a Set

⤷ Set Partitions and Equivalence Relation(e.g.)

Determine all partitions of A＝{1,2,3}

2

1 3

π1

2

1 3

π5

2

1 3

π2

2

1 3

π4

2

1 3

π3

π1  corresponds to the universal relation EA

π5  corresponds to the identity relation IA
π2,π3 π3correspond to the equivalence relations R2, R3 和 R4.

R2={<2,3>,<3,2>}∪IA
R3={<1,3>,<3,1>}∪IA
R4={<1,2>,<2,1>}∪IA



4.4.3 Partition of a Set
⤷ Set Partitions and Equivalence Relation(e.g.)

Example: Let A={1,2,3,4}

 Define a binary relation R on A×A：

<<x, y>,<u, v>>∈R ⇔ x+y = u+v, find the partition induced by R. 

Solution: A×A={<1,1>, <1,2>, <1,3>, <1,4>, <2,1>, <2,2>, <2,3>, 
<2,4>,<3,1>, <3,2>, <3,3>, <3,4>, <4,1>, <4,2>,<4,3>, <4,4>}

 According to the sum condition <x,y> and x+y=2,3,4,5,6,7,8 which 
partition A×A into 7 equivalence classes:

(A×A)/R={{<1,1>}, {<1,2>,<2,1>}, {<1,3>, <2,2>, <3,1>}, 

{<1,4>, <2,3>, <3,2>, <4,1>}, {<2,4>, <3,3>, <4,2>},

{<3,4>, <4,3>}, {<4,4>}} 

e.g.
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4.4.4 Partial Order Relations
⤷ Partial Order Relation on Set A

Definition 4.22:
A relation on a non-empty set that is reflexive, antisymmetric, 
and transitive is called a partial order relation on A, denoted by 
≼. If <x, y>∈≼, then we write it as  x≼y, which is read as x “less 
than or equal” y.  

Examples:

• The identity relation IA on set A is a partial order relation on A . 

• The less than or equal to relation, divisibility relation, and 
subset inclusion relation are also partial order relations on their 
respective sets.

e.g.



4.4.4 Partial Order Relations
⤷ Characteristics of Partial Order - Comparability and Total Order

Definition 4.23: Comparability

Let R be a partial order relation on a non-empty set A, 

• For x, y∈A, we say that  x and y are comparable if and only 
if x⪯y or y⪯x.

• Condition for incomparability: If no partial order relation 
relates x and y, then they are not comparable.

Definition 4.24: Total Order 

• If R is a partial order on a non-empty set A, ∀x, y∈A, x and 
y are always comparable, R is called a total order.



4.4.4 Partial Order Relations
⤷ Characteristics of Partial Order - Covering

Examples:

• The "less than or equal to" relation on numerical sets (such as 
real numbers and integers) is a total order.’

• The divisibility relation is not a total order on the set of 
positive integers.

Definition 4.25: Covering 

x,y∈A, if x≺y and there is no z∈A such that x≺z≺y, then 
we say that y covers x.

• Such as: On the set {1, 2, 4, 6} with the divisibility relation: 

2 covers1, 4 and 6 covers2. 

4 doesn’t cover 1.

e.g.



4.4 Equivalence Relations and Partial Order Relations

4.4.1 Equivalence Relations

4.4.2 Equivalence Classes and Quotient Sets

4.4.3 Partition of a Set

4.4.4 Partial Order Relations

4.4.5 Partially Ordered Sets and Hasse Diagrams



4.4.5 Partially Ordered Sets and Hasse Diagrams
⤷ Partially Ordered Set

Definition 4.26： Partially ordered set.
A partially ordered set (poset) consists of a set A together with 
a partial order relation ≼ , denoted as <A,≼>.

Such as：

• The set of integers with the "less than or equal to" relation 
forms a poset <Z,≤>.

• The power set  P(A) with the subset inclusion relation forms a 
poset <P(A),R⊆>. 



4.4.5 Partially Ordered Sets and Hasse Diagrams
⤷ Simplified representation of a poset - Hasse diagram

Hesse Diagram:  A simplified graphical representation of a partial 
order that eliminates reflexivity, antisymmetry, and transitivity in 
the diagram.

Characteristics:

•Each node has no self-loops.

•The order between two connected nodes is represented by their 
relative position: Lower-positioned elements come earlier in the 
order.

•There is an edge between two nodes if and only if they have a 
covering relation.

 A Hasse diagram is a special type of relational graph for posets, with 
transitive edges removed and implicit direction.



4.4.5 Partially Ordered Sets and Hasse Diagrams
⤷ Simplified representation of a poset - Hasse diagram(e.g.)

Example :   <{ 1, 2, 3, 4, 5, 6, 7, 8, 9 }, RDiv>

<P({a, b, c}), R⊆>

e.g.



4.4.5 Partially Ordered Sets and Hasse Diagrams
⤷ Simplified representation of a poset - Hasse diagram(e.g.)

Example : Given the Hasse diagram of the 
partially ordered set <A,R> shown below, find the 
expression for the set A and the relation R.

 Solution: ①Identify the Elements in A;②Extract 
the Covering Relations;③Complete transitive and 
reflexive relations.

A={a, b, c, d, e, f} 
R={<b,d>,<b,e>,<b,f>,<c,d>,<c,e>,<c,f>,<d,f>,<e,f>}∪IA

e.g.



4.4.5 Partially Ordered Sets and Hasse Diagrams
⤷ Key elements of a poset and their properties

Definition 4.27:   Let<A,≼>be a partially ordered set (poset) , B⊆A, y∈B.
(1) if ∀x(x∈B→y≼x), then y is called the least element of B.
(2) if ∀x(x∈B→x≼y), then y is called the greatest element of B.
(3) If ∀x(x∈B∧x≼y→x=y), then y is called a minimal element of B. 
(4) If ∀x(x∈B∧y≼x→x=y), y is called a maximal element of B.
Properties:

• In a finite set, minimal and maximal elements always exist and may not 
be unique.

• Least and greatest elements are not guaranteed to exist, but if they 
do, they are unique.

• The least element is always a minimal element.
• The greatest element is always a maximal element.
• Isolated nodes are both minimal and maximal elements.



4.4.5 Partially Ordered Sets and Hasse Diagrams
⤷ Upper/lower bounds, supremum, infimum of a poset

Definition 4.28:   Let<A, ≼> be a partially ordered set (poset), 
and let B⊆A, y∈A.

(1) If ∀x (x∈B→x≼y) , then y is called an upper bound of B.

(2) If ∀x (x∈B→y≼x) , then y is called a lower bound of B.

(3) Let C＝{y | y is an upper bound of B}, the least element of 
C, if it exists, is called the least upper bound (supremum) of 
B or the supremum.

(4) Let D＝{y | y is a lower bound of B}, The greatest element
of D, if it exists, is called the greatest lower bound 
(infimum) of B or the infimum.



4.4.5 Partially Ordered Sets and Hasse Diagrams
⤷Mathematical properties of bounds,supremum,and infimum in a poset

Properties:

• Lower bounds, upper bounds, infimum, and supremum are not always 
guaranteed to exist.

• Lower bounds and upper bounds, if they exist, may not be unique.

• The infimum and supremum, if they exist, are unique.

• The least element of a set is its infimum, and the greatest element is 
its supremum, however, the reverse is not always true.



4.4.5 Partially Ordered Sets and Hasse Diagrams

⤷ Upper/lower bounds, supremum, infimum of a poset（e.g.）

Example:
(1) Given the partially ordered set<A,≼> as shown in the diagram, find 
the minimal elements, least element, maximal elements, and greatest 
element of A.
(2) Let B＝{ b, c, d }, find the lower bounds, upper bounds, infimum 
(greatest lower bound), and supremum (least upper bound) of B.

Solution (1) ：Minimal elements: a, b, c；
Maximal elements：a,  f；
No least element or greatest element.
Solution (2) ：
Lower bounds and greatest lower bound do not exist.
Upper bounds: d, f
Least upper bound (supremum): d

e.g.



4.4.5 Partially Ordered Sets and Hasse Diagrams

⤷ Special Subsets of a Poset: Chains and Antichains

Definition 4.29： Let <A,≼>be a partially ordered set (poset), and 
B⊆A.

(1) If for all ∀x,y∈B，x and y are comparable, then B is called a 
chain in  A，The number of elements in B is called the length of the 
chain.

(2) If for all ∀x,y∈B，x≠y，x and y are not comparable, then B is 
called an antichain in A，The number of elements in B is called the 
length of the antichain..

Examples：In the poset <{1,2,…,9},|>中，{1,2,4,8} is a chain of 
length 4，{1,4} is a chain of length 2，{2,3} is an antichain of 
length 2. The singleton set {2 has length 1 and is both a chain and 
an antichain.

e.g.



4.4.5 Partially Ordered Sets and Hasse Diagrams

⤷ Antichain Decomposition Algorithm for Poset

Theorem 4.9：Let <A,≼> be a partially ordered set (poset). If the 
length of the longest chain in A is n, then the poset can be 
decomposed into n disjoint antichains. 

Algorithm 4.2: Antichain Decomposition Algorithm for Posets.

Input: A partially ordered set A

Output: Antichains B1, B2, …
1．i←1
2．Bi←the set of all maximal elements in A (which is an antichain)
3．A←A−Bi

4．if A≠∅
5． i←i+1
6． Go to 2  



4.4.5 Partially Ordered Sets and Hasse Diagrams

⤷ Topological Sorting - Extending a Poset to a Total Order

Topological Sorting: Expanding a partially ordered set (poset)
into a totally ordered set is called topological sorting.

Algorithm 4.3: Topological Sorting

Input: A partially ordered set A
Output: A sorted order of elements in A

1. i←1
2. Select a minimal element ai from A and consider it the

smallest element
3．A←A−{ai}
4．if A≠∅
5． i←i+1
6． Go to 2



4.4.5 Partially Ordered Sets and Hasse Diagrams

⤷ Topological Sorting - Extending a Poset to a Total Order(e.g.)

Examle：A set of tasks A is given with partial 
order constraints, and its Hasse diagram is shown 
in the figure.
A = {T1, T2, T3, T4, T5, S1, T6, S2, T, T9, T10}

Check whether the following topological order 
is valid.
such as:
T1, T2, T3, T4, S1, T5, T6, S2, T, T9, T10；

T1, T2, T3, T4, S1, T6, S2, T, T9, T5, T10;

e.g.



4.4 Equivalence Relations and Partial Order Relations•Brief summary

Objective :

Key Concepts ：
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